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Summary: Palladium(0)-tertiary phosphine complexes 
catalyze the chemo- and regioselective isomerization of 
epoxides to carbonyl compounds in good to excellent 
yields; alkyl-substituted epoxides afford methyl ketones, 
and aryl-substituted epoxides form aldehydes or ketones 
via cleavage of the benzylic C-0 bond. 

Epoxides are one of the more useful classes of sub- 
strates available to the synthetic organic chemist. As 
part of a research program directed toward the develop- 
ment of synthetically useful transformations of epoxides 
catalyzed by transition metal complexes,l we have in- 
vestigated the reaction of epoxides with low-valent, 
electron-rich palladium complexes. "his report describes 
our preliminary observation that a variety of different 
types of epoxides are isomerized to carbonyl compounds 
via Pd(0) catalysis, in a chemo- and regioselective man- 
nerS2 

Treatment of an epoxide bearing a single aliphatic 
substituent with a catalytic amount of the palladium(0) 
complex3 generated in situ from palladium(I1) acetate and 
tri-n-butylphosphine (3 equiv per Pd) in refluxing toluene 
leads to rapid formation of the corresponding methyl 
ketone in good yield (eq 1). For example, 1,2-epoxydode- 
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(a) Pd(0Ac)p (5-lo%), PBug (3 equivlPd), 
toluene, reflux; (b) isolated as a mixture of 
4 isomeric olefinic ketones. 

cane undergoes isomerization to 2-dodecanone in 88% 
yield.4 The isomerization reaction is completely regio- 
selective: nq trace of aldehyde is observed by 'H NMR 
or capillary €32 analysis of the crude reaction mixture. 
Reactive functional groups such as primary hydroxyl, a$- 
unsaturated ester, and nitrile are tolerated well. In the 
latter two examples, the longer reaction times required 
for complete isomerization suggest possible catalyst 
inhibition by competitive coordination of the electron-poor 
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double bond or the nitrile. Nevertheless, the yields of 
methyl ketone are nearly quantitative. A terminal 
olefinic group does not inhibit the isomerization of the 
epoxide, but is itself partially isomerized to a mixture of 
isomeric alkenes. In contrast to the isomerization of 
monosubstituted epoxides, substrates bearing two ali- 
phatic substituents, either vicinal (such as 1,2-epoxycy- 
clododecane), or geminal (such as l-oxaspiro[ll.2ltetra- 
decane), are completely unrea~t ive .~  While the isomer- 
ization of aryl-, vinyl-, or keto-substituted epoxides by 
late transition metal complexes is well established,' the 
analogous isomerization of epoxides bearing only ali- 
phatic substituents, particularly in synthetically useful 
yields, is quite rare. 

Aryl-substituted epoxides undergo palladium-catalyzed 
isomerization in refluxing benzene, using the palladium- 
(0) complex derived from palladium(I1) acetate and 
triphenylphosphine (3 equiv per Pd), with exclusive 
cleavage of the benzylic C-0  bond (eq 2). A simple 

Ar = 2-naphthyl, R = H. 1.5 h 

Ar= R = Ph, 43 h 

(a) Pd(0Ac)p (5%), PPh3 (3 equiv/Pd), 
benzene, reflux; (b) PBug used rather than 
PPh3. 
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monosubstituted epoxide affords the corresponding aryl 
acetaldehyde in moderate yield. Isomerization of trans- 
2-(2-naphthyl)-3-methyloxirane affords the methyl ketone 
in excellent yield, with the same complete regioselectivity 
in C-0 activation; no trace of the ethyl ketone was 
observed by 'H NMR analysis of the crude reaction 
mixture. trans-Stilbene oxide affords l,&diphenyletha- 
none; however, acceptable turnover rates are observed 
only with PBu3. Presumably, the increased steric hin- 
drance of the diary1 epoxide necessitates much longer 
reaction times. 

We suggest that the reactivity of simple alkyl-substi- 
tuted epoxides toward Pd(OAc)z/PBu3 is a result of the 
decreased steric demand and increased electron-donating 
ability of the tri-n-butylphosphine ligand, compared to 
triarylphosphines. The more electron-rich Pd(0)-tri- 
alkylphosphine complex would be expected to undergo 

(4)An example of the experimental procedure employed is as 
follows: A suspension of Pd(0Ac)z (10 mg, 45 pmol) in deoxygenated 
toluene (1 mL) is treated with PBu3 (34 +L, 135 pmol) under Nz, 
whereupon formation of the yellow Pd(0) complex ensues. The solution 
is treated with 1,2-epoxydodecane (195 pL, 0.94 "01) and refluxed 
under Nz for 3 h. The reaction mixture is then chromatographed 
directly on silica gel (6:l hexane-ethyl acetate) to afford 2-dodecanone 
(152 mg, 88%), Rf = 0.49. 'H NMR (270 MHz, CDC13): 6 2.44 (t, J = 
7.0 Hz, 2H), 2.13 (8 ,  3H), 1.57 (m, 2H), 1.26 (m, 14H), 0.90 (t, J =  6.6 
Hz, 3H). 

(5) No products other than the starting epoxide were observed by 
1H NMR or capillary GC analysis, after refluxing in toluene for 24 h. 
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Scheme 1 

Pd(OAC)p'PBu3 
C&&, reflux, 80% 
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Pd(0AC)dPPhS 
CsH6, reflux, 65% 
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oxidative addition of the epoxide C-0 bond more readily 
than Pd(PPhs),. Indeed, 1,2-epoxydodecane is completely 
inert to reflux in the presence of Pd(OAc)z/PPhs. This 
chemoselectivity allows one to control the reactivity of 
electronically dissimilar epoxy groups within the same 
molecule, based merely on the choice of tertiary phos- 
phine. For example, treatment of diepoxide 1, having 
both aryl- and alkyl-substituted epoxy groups, with Pd- 
(OAc)z/PBu3 affords the diketone 2, arising from simul- 
taneous isomerization of both epoxy groups. In contrast, 
isomerization of 1 with the catalyst derived from Pd- 
(OAc)z/PPha yields epoxy ketone 3 as the sole product, 
via isomerization of only the aryl-substituted epoxy 
group; the alkyl-substituted epoxy group is completely 
unaffected. This type of reagent-based selectivity avoids 
the use of protecting groups and is of great potential 
importance in the selective transformation of polyfunc- 
tional substrates. 

In control experiments, neither Pd(OAc)z nor PBu3 
alone catalyzes the isomerization of 1,2-epoxydode~ane.~ 
We find that other low-valent, late transition metal 
species (e.g., Ni(0) and Rh(1) tertiary phosphine com- 
plexes) also catalyze the isomerization of 1,2-epoxydode- 
cane to 2-dodecanone, but much more slowly, and in 
considerably lower isolated yields.6 

It has been suggested7 that the isomerization of ep- 
oxides by late transition metal complexes proceeds via 
oxidative addition of the C-0 bond to a low-valent metal 
fragment to yield a metallaoxetane. Subsequent @-hy- 
dride elimination to form a hydrido-enolate species, 
followed by reductive elimination, would afford the 
carbonyl compound and regenerate the active catalyst. 
Although we have not yet completed any mechanistic 
studies, the validity of such a mechanism is supported 
by the isolation of m e t a l l a ~ x e t a n e ~ ~  and hydrido- 
en01ate~~ complexes from the reactions of low-valent 
group 9 metal complexes with epoxides. 

The importance of this new isomerization procedure 
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arises from its chemo- and regioselectivity. These prop- 
erties suggest a useful alternative to the Wacker oxida- 
tions of terminal alkenes to methyl ketones: namely, 
alkene epoxidation, followed by palladium-catalyzed 
isomerization of the epoxide to the methyl ketone. This 
two-step protocol should be applicable to substrates 
which are unstable to the Lewis-acidic conditions of the 
Wacker oxidation, or which react unselectively. For 
example, Wacker oxidation of a,@-unsaturated esters 
yields @-keto  ester^;^,^ thus, oxidation of a substrate 
bearing both conjugated and nonconjugated double bonds 
should be unselective, resulting in oxidation of both. 
However, m-CPBA selectively epoxidizes the nonconju- 
gated double bond; the resulting epoxy ester is then 
cleanly isomerized to the methyl ketone, as we have 
shown (eq 1). Similarly, the Wacker oxidation of truns- 
B-methylstyrene shows poor regioselectivity: a 3: 1 mix- 
ture of 1-phenyl-2-propanone and 1-phenyl-1-propanone 
was obtained.1° In contrast, the two-step protocol of 
epoxidatiofld-catalyzed isomerization (eq 2) of the 
2-naphthyl analog forms the 1-aryl 2-ketone with com- 
plete regioselectivity. 

The advantage 'of palladium catalysis over traditional 
Lewis acid-mediated epoxide isomerization" arises both 
from regioselectivity and from chemoselectivity. Mix- 
tures of ketones and aldehydes have been obtained in the 
isomerization of both alkyl-substituted and aryl-substi- 
tuted epoxides with group 1 and 2 metal catalysts.12 In 
contrast, the Pd(0) complexes reported in this work show 
complete regioselectivity in isomerization. Also, sub- 
strates bearing acid-sensitive functionality should toler- 
ate the Lewis-basic conditions employed herein quite 
well. We are continuing to investigate the scope, mecha- 
nism, and synthetic utility of this potentially useful 
reaction. 
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